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SUMMARY

The hydrodynamic and aerodynamic characteristics of a model of a

multi jet water-based Mach 2.0 aircraft equipped with hydrofoils have

been determined. Takeoff stability and spray characteristics were

very good, and sufficient excess thrust was available for takeoff in

approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds.

Longitudinal and lateral stability during smooth-water landings were good.

Lateral stability was good during rough-water landings, but forward loca-

tion of the hydrofoils or added pitch damping was required to prevent

diving.

Hydrofoils were found to increase the aerodynamic lift-curve slope

and to increase the aerodynamic drag coefficient in the transonic speed

range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the

cruise Mach number of 0.9. The hydrofoils provided an increment of posi-

tive pitching moment over the Mach number range of the tests (0.6 to 1.42)

and reduced the effective dihedral and directional stability.

INTRODUCTION

Much effort has been spent in attempts to exploit the potentials of

the hydrofoil. In recent years hydrofoils have been applied to boats

with considerable success. Most of this work, however, has been done at

speeds sufficiently low to avoid cavitation. For the speeds at which

water-based aircraft operate, however, cavitation is generally encountered

and associated force changes occur which tend to introduce instability in

rise and pitch.

*Title, Unclassified.
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One solution to the problem of cavita_ion entails the use of surface-

piercing supercavitating hydrofoil section_ (ref. 1). Sharp-leading-edge

or "supercavitating" hydrofoil sections operating near the water surface

tend to ventilate the upper surface of the hydrofoils at low speed and

avoid the sudden force changes and severe aydrofoil erosion that generally

accompany the onset of cavitation at high speed. Therefore, a supercavi-

tating hydrofoil system has been applied to a supersonic water-based

research configuration (ref. 2). Surface-piercing main hydrofoils

located ahead of the center of gravity are used in combination with a

hard-chine planing afterbody. The functions of strut and lifting surface

are combined to obtain a structurally fea_ible gear. The hydrodynamic

characteristics of the configuration with the hydrofoils were investigated

in the towing tanks at the Langley Research Center, and the aerodynamic

characteristics were determined in the Langley 8-foot transonic pressure

tunnel.

The tank investigation was made with hydrofoils installed on the

fuselage of the triangular-wing configura_ion described in reference 2.

The resistance, spray, and longitudinal s_ability during takeoff and

landing in smooth water and the motions a_ angular and vertical accelera-

tions during landings in waves were dete_Qined. The longitudinal and

lateral stability characteristics were observed during free-body landings

in smooth water and in waves. Several longitudinal locations of the

hydrofoils and the effect of added pitch damping were investigated.

In order to determine the effect of hydrofoils on the aerodynamic

characteristics, wind-tunnel tests were _ade with hydrofoils installed

on the hull of the triangular-wing confisiuration. These data were

obtained to aid in evaluating the need tc retract the hydrofoil gear.

The longitudinal area distributions of t_e configuration having a fuse-

lage (ref. 2) or a hull were nearly identical and the aerodynamic char-

acteristics were similar; therefore, the effects of changes in the aero-

dynamic characteristics of the fuselage (!ue to the addition of the

hydrofoils were assumed to be similar to the changes measured with the

hydrofoils added to the hull. The lift, drag, and pitching moment were

measured over a range of angle of attack at zero yaw and over a range of

sideslip for one angle of attack for a M_ch number range from 0.6 to

1.42. Yawing moment, rolling moment, anl side force were measured over

a range of sideslip angles at one angle )f attack.
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SYMBOLS

A

g

h

n v

R

V

Vv

7

5s

T

_L

Hydrodynamic

angular acceleration, radians/sec 2

acceleration due to gravity, 32.2 ft/sec 2

wave height, ft

distance of the hydrofoil trailing-edge tip forward of 6/4, ft

vertical acceleration, g units

total resistance, ib

horizontal velocity, knots

vertical velocity (sinking speed), ft/min

flight-path angle, deg

initial load on water (gross load), ib

stabilizer deflection referred to fuselage baseline, positive

when trailing edge is down

trim (angle between fuselage baseline and horizontal), deg

landing trim (trim at contact), deg

Aerodynamic

All aerodynamic data have been reduced to standard nondimensional

coefficients. The wind-tunnel data are referred to the stability-axes

system (fig. I), with the axes originating in the model plane of symmetry

at 55 percent of the mean aerodynamic chord in the wing chord plane.

b

T

CD

C L

wing span, ft

drag coefficient, Drag
qS

lift coefficient, Lift
qS



F

/I

C Z

czp

Cm

CmCL

C n

Cnp

Cy

Cy_

c

it

L/D

M

q

S

CL

rolling-moment coefficient, Ro].ling moment
qSb

rate of change of rolling-momen'_, coefficient with sideslip angle

3c z

per degree, 87-

pitching-moment coefficient, Pitching moment
qSE

rate of change of pitching-moment coefficient with lift coef-

ficient (Cm _ O)

yaw ing-moment coeffic lent,
Yaw ing moment

qSb

rate of change of yawing-moment coefficient with sideslip

angle per degree, dCn

side-force coefficient,
Side _orce

q_

rate of change of side-force c(efficient with sideslip angle

per degree, 8C___y

chord

wing mean aerodynamic chord, f;

angle of incidence of horizont_l tail (-2.5 ° for these tests),

referred to fuselage baselin,_, deg

CL

lift-drag ratio, C_

free-streamMach number

free-stream dynamic pressure, lb/sq ft

wing area, sq ft

angle of attack of wing chord plane, deg

angle of sideslip, deg



e pitching velocity, deg/sec

Subscripts:

max maximum

min minimum

DESCRIPTIONOFCONFIGURATION

The basic configuration with a fuselage and hydro-ski gear has been
described in reference 2. The general arrangement of the configuration
with a fuselage and a hydrofoil gear is shownin figure 2. All mission
and performance characteristics were assumedto be the sameas those
described in reference 2, and all major componentsof the aircraft were
retained with the exception of the hydro-ski gear, which was replaced by
a hydrofoil gear.

A pair of supercavitating hydrofoils was extended downwardfrom the
bottom on either side of the fuselage at a negative dihedral of 45° in
order to provide hydrodynamic lifting surfaces which would permit the
fuselage to run above the water and avoid wave impacts and hydrodynamic
resistance at high speeds. Location of the hydrofoils near the center
of gravity is desirable to avoid large hydrodynamic pitching moments
from the hydrofoils, especially during operation at high speed in waves.

Preliminary rough-water taxi tests of a 1/20-size tank model were
madewith a pair of triangular-plan-form (no trailing-edge sweepback)
hydrofoils having an aspect ratio of 2.56. The aerodynamic tests also
were madewith these hydrofoils. The preliminary tank tests in rough
water indicated that the vertical accelerations resulting from wave
impacts were relatively large, as were the motions in pitch and rise.
Increasing the aspect ratio of the hydrofoils from 2.56 to 3.54 by
increasing the span, decreasing the root chord, and making a finite tip
chord resulted in a marked improvement in the rough-water behavior;
therefore_ the present tank tests were madewith the altered hydrofoils
which had a taper ratio of 0.i0. The characteristic dimensions of the
low-aspect-ratio hydrofoils used for the aerodynamic investigation and
of the hydrofoils having a higher aspect ratio used for the tank tests
are given in table I in terms of full-size dimensions.



MODELS

Tank Model

Photographs of the 1/14-size dynamic tan_ model are presented in
figure 3. A similar 1/20-size model was used for preliminary rough-water
and free-body tests. The 1/14-slze model was required to permit smooth-
and rough-water tests on the towing carriage at gross weights corresponding
to the takeoff (design gross weight) and the ]anding condition (two-thirds
of the design gross weight) at a scale takeoff speed which was within the
speed capability of the towing carriage.

The fuselages were constructed of plastic-impregnated glass cloth,
wood, and aluminum. The wing was of solid balsa and hardwood construc-
tion covered with a thin plastic-impregnated glass-cloth skin. Tail sur-
faces were of conventional woodenconstructlor covered with silk. The
hydrofoils and their associated attachment devices were madeof aluminum.

The wing incidence was fixed at lO° (relstive to the fuselage base-
line), and leading-edge slats were used to prevent premature wing stall
usually encountered at the low Reynolds numbersof the tank tests. The
all-movable, horlzontal-tail surfaces were provided with a linkage system
to give an elevator-stabillzer deflection ratlo of approximately 2 to 1

over a stabilizer deflection range from l0 ° tc -15 °. Because of the low

aerodynamic pitch damping inherent in this configuration, the effect of

additional aerodynamic damping on the hydrodyramlc characteristics was

investigated. The damping was provided by a 8yro-controlled elevator

actuator, shown in figure 4 and described in reference 3.

The hydrofoils were cut from flat-aluminum stock and were welded to

attaching plates at the root. The leading-edge bevel of 9° was machined,

and the assembly was anodized. A flat hydrofoil section was used for

simplicity of construction, since preliminary test results, shown in

figure 5, indicated no significant change in resistance at low speeds

from that of a circular-arc cambered section. Some decrease in the trim

and rise and an increase in the emergence speeff were accepted.

A sealed compartment was built into the bottom of the fuselage for-

ward of the center of gravity and was equipped with mounting tracks for

internal attachment of the hydrofoils. The tr_cks facilitated hydrofoil-

configuration changes, fore-and-aft positioning, or hydrofoil-incidence

changes. The compartment was sealed by lightweight slotted hatches and

tape, thus providing a faired fuselage hydrofoil intersection. Prelimi-

nary tests with the 1/20-size model had indicated no fuselage or hydro-

foil spray near the forward engine inlets. In order to save weight, the

forward engine nacelles were not included on the 1/14-size model.
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Electric contacts were located on the hull keel at the bow and stern

and at the hydrofoil tips. The contacts indicated when these parts of

the model were in contact with the water and also were used to release

a trim brake during landing tests.

Wind-Tunnel Model

Photographs of the 1/42.5-size wind-tunnel model of the hull con-

figuration with the hydrofoils are shown in figure 6. The fuselage was

of plastic-impregnated glass cloth over a steel core in which the six-

component strain-gage balance was housed. The aerodynamic surfaces and
forward nacelles and struts were of stainless steel. The rear nacelles

were of plastic-impregnated glass cloth. The rear portion of the fuselage

was cut off to allow installation of the support sting.

The triangular-plan-form hydrofoils were made from flat stainless

steel with a 9° bevel on the upper surface at the leading edge. They

were attached to the hull bottom at a fixed incidence of 9° relative to

the fuselage baseline. The characteristics and dimensions of the hydro-

foil system are given in table I.

APPARATUS AND PROCEDURE

Hydrodynamic Investigation

General.- The hydrodynamic investigation was made in the towing tanks

at the Langley Research Center. The apparatus and procedures used are

generally similar to those described in references 4 and 5- The model is

shown on the towing apparatus in figure 7, and the catapult for the free-

body tests is shown in figure 8.

All tests were made with the center of gravity located at _/4, a

wing incidence of i0 °, and a hydrofoil incidence (measured relative to

the fuselage baseline in the vertical plane) of 9°, Smooth-water resist-

ance and takeoff tests were made at a model weight corresponding to

225,000 pounds (full size), and landing tests on the towing carriage were

made at a model weight which corresponded to a full-size weight of

150,000 pounds. Catapult landings were made at a weight corresponding

to a weight of 160,000 pounds. Engine thrust was not simulated during

any of the tests; however, the unbalanced moment in pitch due to thrust

was simulated for the takeoff tests by a weight moment applied to the

model. Landings were assumed to be power-off and no thrust moment was

simulated.
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Spray characteristics in smooth water anl in waves were determined

from visual observations, photographs, and motion pictures. Smooth-water

spray was studied during constant-speed and accelerated runs to takeoff

and during landing tests. Spray characteristLcs in waves were determined

during landings and constant-speed taxi runs.

Smooth-water tests.- For the tests on the towing carriage in smooth

water, the model was pivoted at the center of gravity and had freedom in

only trim and rise. The longitudinal forces (resistance and drag) were

obtained by means of a mechanical optical dyn_mometer connected to the

towing gear. At the design gross weight the trim, rise, and resistance,

including air drag of the complete model, were obtained for a range of con-

stant speeds for several fixed stabilizer deflections with the thrust moment

simulated. ("Rise" is defined as the distance of the tips of the hydrofoils

from the undisturbed water surface, being positive when the hydrofoils are

above the water surface and zero when they contact the undisturbed water at

zero trim.). Trim and rise were also measured during accelerated runs

(4_ ft/sec 2) to takeoff for a range of fixed stabilizer deflections.
k

Landings were made in smooth water over a range of contact trims.

With the model held at the desired landing trim by the trim brake, the

carriage was decelerated at a uniform rate from a speed in excess of

flying speeds, thus allowing the model to glide onto the water. At the

instant of model contact with the water surfsce the trim brake was auto-

matically released to allow a free-to-trim isnding runout. Time histories

of speed, trim, and rise were recorded.

Rough-water tests.- For rough-water tests on the towing carriage,

the model had fore-and-aft freedom in addition to freedom in trim and

rise. The landings were made by using the ssme procedure as for smooth-

water landings. Landings were made at a landing trim of i0° and were

primarily in waves 4 feet high over a range cf wave lengths from 160 to

420 feet. A minimum of 8 landings in each wsve length was made whenever

possible. A few landings were made in 2- an_ 6-foot waves. Three hydro-

foil longitudinal positions were investigated. Artificial pitch damping

in which a gearing ratio _ratio of elevator deflection to pitching veloc-

85s_ \

ity 8--_--/of 2.57 seconds was provided for mcst of the rough-water

landings. Only in the most forward hydrofoi] positions were landings

made without pitch damping as well as with pitch damping. Time histories

of speed, trim, fore-and-aft position of the model, horizontal-tail

deflections, and vertical and angular accele_ ations were recorded.

Vertical accelerations were measured wi_h a strain-gage accelerometer

mounted on the towing staff. The angular ac(elerations were measured with

a matched pair of accelerometers of the same type located within the model.

In the static condition all accelerometers w_re considered to read zero.

The frequency-response curves of the strain-_;age-accelerometer and



recording-galvanometer systems were flat to within ±5 percent between 0
and 27 cycles/sec, as in previous tests.

Becauseof inherent model structural vibration during rough-water
landings_ the accelerometer traces had to be faired in order to obtain
the impact-loads data. Figure 9 showsthe record of the accelerometer
traces for a typical landing. The method used to fair the vibrations
is also indicated. The envelope of the vibration is estimated and the
meanaxis of the envelope is drawn to aid in obtaining the transient
load. Consideration is given to the duration of the initial oscillation
and to the rate of changeof model displacement in fairing the accelerom-
eter traces. The envelope method of waveform analysis described in
reference 6 was used in fairing the envelope of the structural vibration.

Free-body landings.- Free-body landings were made with the 1/20-size

model by using the catapult shown in figure 8. The catapult consisted

mainly of a "sling-shot" propulsive unit made up of rubber-strand shock

cords_ pulleys, and cables, a pair of rails and supporting structure, and

a launching carriage. The model was supported at the desired landing

attitude by a three-point, zero-length launching arrangement which allowed

it to be cast free when the carriage encountered the arrester cords

(bumper) near the forward end of the rails. The model was statically

balanced and the elevators were set to maintain the launching attitude

during free glide onto the water.

The free-body landings were made in smooth water and in waves at a

weight corresponding to 160,000 pounds and with the hydrofoils in the

aft and intermediate longitudinal positions (_ = 3.0 and 6.3 feet, respec-

tively). The landings were made with fixed controls at a landing trim

of 9° and with initial zero roll and zero yaw. The speed at launching

was the minimum flight speed. Visual observations and motion-picture

cameras were used to determine landing behavior.

Aerodynamic Investigation

The aerodynamic investigation was conducted in the Langley 8-foot

transonic pressure tunnel with natural transition on the model at Mach

numbers from 0.6 to 1.42. Reynolds number based on _ varied between

1.0 x 106 and 1.29 x 106 over the Mach number range of the tests.

The tunnel has a slotted test section in which the Mach number can

be varied continuously to a Mach number of 1.2. Fairings which were

described in reference 7 were used to enclose the slots of the test

section to produce a Mach number of 1.42. All aerodynamic data presented

are essentially free of wall-reflected disturbances. The present inves-

tigation was conducted at a stagnation pressure of 0.5 atmosphere and at

a dewpoint such that the air flow was free of condensation shocks.
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Measurements.- The model was mounted on a sting-supported, six-

component strain-gage balance as shown in figure 6. The force and moment

results have been adjusted to the condition of free-stream static pressure

on the base of the model• In addition, the internal drag has been sub-

tracted from the drag data to give a net e:_ernal drag• The internal

drag values used are given in reference 2.

The angle of attack of the model was varied from about -4° to 16° .

Characteristics in sideslip of the model with the hydrofoils were obtained

at angles of sideslip from -4° to 8° at an angle of attack of approximately

5°. The angles of attack and yaw have been corrected for balance and sting

deflections and for stream-flow angularity.

Accuracy.- Based on balance calibrations and repeatability of data,

it is estimated that the various measured _uantitles are accurate to

within the following limits:

Mach number ..........................

_, deg ..........................

B, deg ............................

±0.0O5
±0.i

iO.l

±0.O3

C_ .............................. _+O.002

Cm .............................. ±0.010

C_ .............................. ±0.0013

Cn .............................. -+0.0038

Cy .............................. ±0.03

RESULTS AND DISCUSSION

Hydrodynamic

Smooth-water spray.- Typical photogr_tphs of the smooth-water-spray

characteristics are shown in figure 10. ]_orward spray was very light,

and it is evident from the photographs th;_ the forward nacelle location

would be well clear of spray at all times. The rear nacelle inlets were

free from spray at all speeds, but light _pray impinged upon the aft end

of the nacelle at speeds between 100 and L60 knots. The horizontal-tail

surfaces were clear of spray, and only light wetting of the lower wing

surface occurred at low speed (approximately 45 knots, full size)•

Spray from the upper surface of the hydrofoils tended to remain

outboard of the fuselage and below the wi_]g and did not significantly

affect the behavior of the model. Spray from the lower surface of

the hydrofoils concentrated in the area between and behind the
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hydrofoils and rose sharply to strike the fuselage a short distance aft
of the hydrofoils at low speeds. The local flow around a similar hydro-
foil is illustrated in figure ll. As the speed increased, the spray
from the hydrofoils movedback along the fuselage and decreased in quan-
tity but increased in velocity relative to the model.

Smooth-water resistance.- The total resistance and corresponding

trim and rise for several stabilizer deflections are presented in fig-

ure 12. In the speed region between 20 and 40 knots, the model trim and

rise increased rapidly as the hydrofoils lifted the model. At constant

speed between 30 and 35 knots, a nondivergent oscillation in trim and

rise occurred. During these oscillations the model trimmed up until the

condition was reached for separation of the flow (venting) from the upper

surface of the hydrofoils. The resulting loss of llft by the hydrofoils

caused the rise and trim to decrease. The flow again attached to the

upper surface of the hydrofoil and the cycle was repeated. During take-

off runs the model accelerated through this region with no instability.

After the initial rapid increase in trim and rise at 50 knots, the

model continued to rise at a much slower rate as speed was increased to

takeoff. In the speed region from 40 to 60 knots, the trim remained

nearly constant as a result of the nearly equal balance between the lift

of the hydrofoils forward and the lift on the afterbody due to the roach

from the hydrofoils. Between 60 and 90 knots, the trim decreased prin-

cipally because of the lift on the afterbody produced by the hydrofoil

roach. Photographs in figure i0 show that in this speed range the entire

forebody was clear of the spray, but the heavy roach from the underside

of the hydrofoils rose steeply to strike the afterbody. The roach and

the drag of the hydrofoils apparently combined to produce the undesirable

low trim in a speed region where the elevators were relatively ineffective.

The total resistance rose to a maximum value in this region and resulted

in a minimum gross-load--total-resistance ratio of 2.4 at a speed of about

75 knots. Above this speed the resistance fell off sharply. Low-amplitude,

low-frequency trim oscillations occurred at about 80 knots.

At speeds above i00 knots, the elevators became effective and it was

possible to reduce the resistance by decreasing the trim to values corre-

sponding more nearly to those for (L/D)max of the hydrofoils and aero-

dynamic surfaces. In addition, the resistance decreased because of a

marked reduction in afterbody wetting.

Excess thrust for acceleration was available throughout the speed

range for takeoff. A takeoff could be made in approximately 32 seconds

and 4,700 feet in smooth water.

Takeoff stability.- The variation of trim with speed during accel-

erated runs simulating takeoff for several fixed-stabilizer deflections
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is shownin figure 13. In general, the chsn_acteristics of the trim
tracks for the range of stabilizer deflections were very similar. The
takeoff stability was very good and the tr_ oscillations which occurred
between 70 and 90 knots were considered insignificant. The rise insta-
bility experienced at low speeds during conl_tant-speed resistance tests
was not evident during accelerated takeoff. _ne range of flxed-stabilizer
deflections for takeoff extended from -6° t,_ -15°.

I_ndin5 stability in smooth water.- Figure 14 presents typical vari-

ations in trim and rise with speed during landings in smooth water.

Except for the initial trim oscillation, which was dependent upon landing

trim, subsequent trim oscillations were relatively mild and quickly damped.

Rise oscillations also were highly damped.

The maximum variations in trim and rise, during the greatest cycle,

as well as the number of rebounds during la_ings in smooth water are

presented in figure 15 as indicated by the _'ebounds at contact trims of

5.0 ° and 5.8 °. An uncorrected variation of the height of the hydrofoil

tip with trim results in a small negative rise reading when the model is

actually clear of the water. The maximum amplitude of trim and rise did

not vary significantly through the range of landing trims. Landing sta-

bility was considered very good. Lateral s_ability during free-body

landings was satisfactory.

Landings in waves.- The data obtained _rlng landings in waves with

and without the addition of pitch damping a_e presented in full-size

values in table II. This table contains th_ pertinent information

regarding the impacts which produced the maximum vertical and angular

accelerations for the various conditions investigated.

Figure 16 shows the variation with wav_ length of maximum vertical

acceleration, maximum angular acceleration, and the maximum and minimum

values of the trim during the greatest trim cycle and of rise during the

greatest rise cycle in the landing in waves 4 feet high. The variation

of impact loads and motions with wave lengti_ was small and the overall

maximum hydrodynamic load experienced for all conditions tested in 4-foot

waves was approximately 3.4g. The usual experience for seaplanes to have

greater positive than negative angular acce[erations during landings in

waves was reversed for this configuration, is indicated in figure 16.

This difference is further evidence of the influence of the hydrofoil

wake on a relatively strong afterbody.

The effect of wave height on the loads and motions is shown in

figure 17, in which the data for three wave heights at one wave length

are plotted. Vertical accelerations increased greatly with increase in

wave height from 2 to 6 feet. The positive (bow-up) angular accelerations

increased rapidly in waves greater than 4 f_et in height as a result of
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the forebody contacting the waves at higher speeds. With increased wave

height, trim amplitudes increased and the minimum trims were lower so

that in 6-foot waves the bow began to plow. Rise amplitudes also

increased with increasing wave height and the model began leaving the
water in 6-foot waves.

The effect of hydrofoil longitudinal position on the landing loads

and motions in waves is summarized in figure 18, in which the maximum

loads and motions for three wave lengths (from the faired data of fig. 16)

are presented. There is little change In maximum loads and motions over

the range of wave lengths tested except for rise, where there is a tend-

ency to increase amplitude with increase in wave length as the hydrofoils

are moved forward. Although the maximum values of trim motion show little

change, significant changes in trim motion at high speed occurred with

change in hydrofoil longitudinal position as illustrated in figure 19,

which shows time histories of trim motions taken from several oscillo-

graph records of landings with the hydrofoils in the most aft position

(_ = 3.0 feet) and in the intermediate position (I = 6.3 feet). It can

be seen that the trim oscillations were milder during the early portion

of the landings for the most aft position; however, the model assumed

very low trim attitudes at high speeds. These low trim attitudes looked

rather dangerous in waves and, during free-body landings that were made

without pitch damping, the model occasionally tripped and dived. How-

ever, with the hydrofoils in the intermediate position, no diving occurred

and the lateral stability was good.

A further illustration of the effect of longitudinal position of the

hydrofoils is shown by typical oscillograph records for the aft (fig. 20(a))

and intermediate (fig. 20(b)) positions. As in figure 19, trim motions

and maximum trim values were less at high speed with the hydrofoils in

the aft position, and the model was observed to run almost entirely on

the hydrofoils with the afterbody relatively clear. This accounts for

the reduced motions in trim and rise and the reduced loads noted in

figure 20(a) for this speed region. With the hydrofoils moved forward,

the model ran on the hydrofoils and the afterbody at high speed_ thus

resulting in more severe loads in this speed region. Loads and motions

for this configuration might be improved by providing increased after-

body clearance and a rear lifting surface with rough-water capabilities

similar to those demonstrated by the hydrofoils.

The effect of added pitch damping is shown by typical time histories

in figure 21. With fixed controls (gyro off), the trim oscillations were

larger and persisted throughout the landing run. It should be noted in

particular that undesirably low trims occurred at high speeds even for

this forward hydrofoil position when the controls were fixed. With added

pitch damping, more desirable trim attitudes were maintained throughout

the landing run and the motions were well damped. These effects were
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true for all wave lengths tested (fig. 16). ['he loads and rise charac-

teristics were relatively unchanged by added pitch damping.

Rough-water spray.- Spray characteristics in rough water were sat-

isfactory. In general, spray was concentrated aft of the wing and the

forward engines would be well clear in all waves tested. In the 6-foot

waves, some loose fine spray entered the aft inlets.

Aerodynamic

Longitudinal aerodynamic characteristics.- The variation of angle

of attack, drag coefficient, and pitchlng-moment coefficient with lift

coefficient over the Mach number range from 0.6 to 1.42 for the hull

version of the present configuration without hydrofoils and with hydro-

foils is shown in figure 22. The longitudinal aerodynamic characteristics

are summarized in figure 23.

The installation of the hydrofoils appe_cs to have had little effect

on the linearity of the llft coefficient with angle of attack. The llft-

curve slope was increased by approximately O.01 at M = 1.O but only

slightly at M = 0.6 or 1.42.

The hydrofoils increased the minimum dra,_ coefficient throughout the

Mach number range, and the increment in mlnimnn drag coefficient was

greatest near M = 1.O. The drag-rise Mach n_rmber defined as dN - O.1

was decreased from 0.96 to 0.94 by the additi, m of the hydrofoils.

A plot of the maximum lift-drag ratio indicates that the addition

of the hydrofoils resulted in a decrease in the overall aerodynamic

efficiency from 7.6 to 7.2 at M = 0.9 (fig. 23).

The hydrofoils provided an increment of ]_osltive (nose-up) pitching-

moment coefficient which increased with incre_sing lift coefficient over

the Mach number range. This increment in pit,_ing-moment coefficient

would be expected since the hydrofoils were h,cated forward of the center

of gravity. No pitchup tendency was noted. 'be hydrofoils produced a

somewhat greater rearward shift of the aerody1amic center (0.196 as com-

pared with O.17c) over the Mach number range _ut resulted in a more for-

ward location of the aerodynamic center for a l speeds of the test.

Lateral aerodynamic characteristics.- Th_ force and moment coeffi-

cients with the hydrofoils are shown for a range of sideslip angles at

an angle of attack of approximately 5.0 ° in f_Lgure 24. Data for the

basic configuration were not available for comparison. The lateral
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force and momentcharacteristics are linear over most of the sideslip
range of the test.

The lateral stability parameters of the hull model with and without
hydrofoils are summarizedin figure 25. The addition of the hydrofoils
reduced the positive effective dihedral and directional stability while
introducing a large increment of Cy_ over the Machnumberrange.

CONCLUDINGREM

The hydrodynamic and aerodynamic characteristics of a model of a
multijet water-based aircraft capable of supersonic speeds and equipped
with surface-piercing supercavitating hydrofoils have been investigated.
The minimumgross-load--total-resistance ratio on the water was 2.4, and
sufficient excess thrust was available for a takeoff in approximately
32 seconds and 4,700 feet in smoothwater. Longitudinal stability during
smooth-water takeoff and landing was considered very good. Overall
inlet, tail, and wing spray clearances were good. The afterbody bottom
and sides were heavily wetted by the wake from the lower surface of the
hydrofoils.

With added aerodynamic pitch-damping control, maximumimpact loads
and motions in 4-foot waves did not vary appreciably with wave length
and hydrofoil longitudinal position, although the most aft hydrofoil
position exhibited undesirably low trim attitudes at high speeds. This
added aerodynamic pitch-damping control was considered necessary to
prevent possible diving during rough-water operation except for the most
forward hydrofoil longitudinal position. Addedpitch damping did not
affect maximumimpact loads appreciably but reduced undesirable trim
motions. Spray characteristics in rough water were satisfactory. Direc-
tional and lateral stability in smoothand rough water were good during
free-body landings.

The hydrofoils were found to increase the lift-curve slope in the
transonic speed region, but they also increased the drag coefficient,
thus resulting in a reduction in the maximumlift-drag ratio from 7.6
to 7.2 at the cruise Machnumberof 0.9. The drag-rise Machnumberwas
decreased from 0.96 to 0.94 by the addition of the hydrofoils. The
hydrofoils provided an increment of positive pitching momentover the
Machnumberrange of the tests, 0.6 to 1.42, and reduced the effective
dihedral and directional stability. The addition of the hydrofoils pro-
duced a somewhatgreater rearward shift of the aerodynamic center (0.19_
as comparedwith 0.17_ where _ denotes the wing meanaerodynamic chord)
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over the Mach number range but resulted in a zlore forward location of

the aerodynamic center for all speeds of the _est.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., August 28, 1959.

RFA_ERENCES

i. Tulin, M. P., and Burkart, M. P.: Linearized Theory for Flows About

Lifting Foils at Zero Cavitation Number. Rep. C-638, David W. Taylor

Model Basin, Navy Dept., Feb. 1955.

2. Petynia, William W., Hasson, Dennis F., anU Spooner, Stanley H.: Aero-

dynamic and Hydrodynamic Characteristics of a Proposed Supersonic

Multijet Water-Based Hydro-Ski Aircraft With a Variable-lncidence

Wing. NACA RM L57G05, 1957.

3. Schade, Robert 0., and Hassell, James L., jr.: The Effects on Dynamic

Lateral Stability and Control of Large _'tificial Variations in the

Rotary Stability Derivatives. NACA Rep. 1151, 1953. (Supersedes

NACA TN 2781.)

4. 01son, Roland E., and Land, Norman S.: Melhods Used in the NACA Tank

for the Investigation of the Longitudinal-Stability Characteristics

of Models of Flying Boats. NACA Rep. 75_, 1943. (Supersedes NACA

WR L-409. )

5. Parkinson, John B.: NACA Model Investigations of Seaplanes in Waves.

NACA TN 3419, 1955.

6. Manley, R. G.: Waveform Analysis. John W_ley & Sons, Inc. (New York),
1945.

7. Wright, Ray H., and Ward, Vernon G.: NACA Transonic Wind-Tunnel Test

Sections. NACA Rep. 1231, 1955. (Supersedes NACA RM L8J06.)



TABLEI

DIMENSIONSANDCHARACTERISTICSOFTHEHYDROFOILSYSTEMS

[All values are full size_

17

Wind-tunnel
Characteristics Tank model model

Number of hydrofoils ..........

Hydrofoil section ...........

Leading-edge sweepback, deg ......

Trailing-edge sweepback, deg ......

Total surface area, sq ft .......

Total projected area, sq ft ......

Aspect ratio, surface area .......

Aspect ratio, projected area ......

Taper ratio ..............

Dihedral, deg .............

Incidence, deg .............

Ratio of gross weight to total projected

area, ib/sq ft ............

Distance of tip below fuselage baseline,
ft ..................

Distance of trailing edge at tip ahead

of wing _/4, ft ...........

Average sternpost angle, deg ......

2

(a)

37.5

2O

155.2

108.4

3.64

2.57

0.I0

-45

9

2,076

11.5

2

(a)

37.5

0

183

128

2.56

1.82

0

-45

9

1,758

8.0

6.3

aRectangular with 9° leading-edge chamfer on upper surface.
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TABLE II

DATA OBTAINED DURING LANDINGS IN WAVES

All values are full size; initial landing trim, _i0 O]

(a) Z = 3.0 feet; with aerodynamic pitch damping

Landing

i

2

3
4

5
6

7
8

9
i0

Ii

12

13
14

15
16

17
18

19
20

21

22

23
24

Wave

height,
ft

2

Wave

length,
ft

210

210

252

210

TL, V v, V, _, nv,

deg ft/min knots!deg g units

9.9 287 59.4 2.7

9.9 402 131.1 :.7

i0.0 258 67.1 _!.2

10.2 242 62.5 2.2

I0.0 608 52.1 6.6

I0.0 525 65.3 L.7

i0.i 674 62.01(.4

I0.I 705 49.8 i.9

9.8 617 60.0 _.8

9.9 817 45.9 9.9

9.8 599 58.3 3.8

9.9 678 62.0 6.2

9.9 541 63.1 4.9

9.9 570 63.8 5.0

9.9 597 56.7!5.9

9.9 707 52.3 7.6

9.8! 694 84.8 4.6

9.81 880 95.2 5,2

.8! 824 98.8 4 7.81 988 79.3 7°0

9.8 546 71.3 4 3

9.81 573 8_.2 3 8

9.8j 604 75-3 4 5
844

9.8 83.5 5 7

A_

radians/sec 2

le2 ------

1.0 ---

i.! ---

.9 ---

2.5 ---
2.4 ---

2.8 ---

2.6 ---

2.6 ---

2.3 ---

2.4 ---

2.8 ---

2.2 ---

2.4 ---

2.2 ---

2.1 ---

4.4 5.6

4.5 2.7

4.2 2.5
4.6 4.6

3.6 2.1

3.4 2.9

3.6 1.6

4.3 3.6
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TABLE II.- Continued

DATA OBTAINED DURING LANDINGS IN WAVES

All values are full size; initial landing trim, ==I0O]

(b) _ = 6. 5 feet; with aerodynamic pitch dsmplng

Landing

9
i0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25
26

27

28

29

30

31

52

35

34

35

56

57

38

39
4o

41

42

43

44

45

46

47

48

Wave

helg_it,
ft

Wave

length, TL' Vv' V,

ft deg ft/min knots

9.7 557 70.4

9.7 24O 85.9

9- 7 305 81.7

9.7 308 82.0

252 9.7 312 91.9

9.7 555 76.2

9.6 281 77.5

9.7 651 76.0

9.7 4o_ 48.1

lO.6 418 58.5

9.7 516 41.o

9.7 564 65.5

168 9.7 570 60.0

10.6 550 115.0

9.7 447 49.2

9.6 449 56.0

12.3 570 66.0

9.9 418 I01.4

i0. i 754 65. i

ii. 5 703 96.4

252 i0.0 687 61.4

i0.0 593 67.1

i0.0 465 98.3

i0.6 586 72.2

9-7 552 88.2

9.7 844 65.3

9.7 615 80.4

9.7 959 68.9
556 9.6 658 74.9

9.6 921 64.9

11.6 903 66.2

i0.5 624 72.9

9.7 705 98.6

.... 754 117 .i

9.6 835 87. o

9.7 669 88.6

9.7 642 89.0

420 i0.6 642 89.9

lO. 6 683 90.2

9.6 855 86.4

9.5 790 83.7

9.6 656 92.8

9-5 1,098 95.5

12.5 638 84.6

9.5 1,051 87.9

210 9.6 1,033 91.9

9-5 837 73.3

9-7 990 89.9

7, nv, A,

deg g units radians/sec 2

4.7 2.1 0.7
4.0 1.8 .6

7.1 2.7 .5

5.0 2.5 .7

5.5 2.1 -9

2.8 2.1 .7

5.1 2.0 1.3
4.6 2.1 i.i

4.9 2.7 0.9

2.5 2.6 .9

6.5 3.0 .4

4.1 3.3 .6

6.5 3.4 .7

5.0 2.9 .7

2.7 2.1 .7

4.6 5.4 .7

3.4 2.1 0.8

7.3 3.1 .9

4.3 2.4 .7

7.8 3.0 1.1

4.8 2.9 .7

8.0 3.3 .4

7.6 5.3 .7

4.8 2.9 .6

4.0 2.8 0.9

3.6 2.6 .7

5.4 3.0 .5

4.3 2.9 .6

4.1 2.6 1.8

4.0 2.8 .6

4.3 2.8 .7

5.6 2.5 .7

5.3 2.5 .6

4.0 2.4 .9

6.6 4.8 4.6

4.2 4.6 3.7

6. 7 4.1 2.1

6.3 5.0 5.1

6.4 5.6 5.3

6.2 4.9 -9

2.7 i.i 0.5

1.6 i.i .5

2.1 1.2 .5

2.1 1.0 .7

1.9 .7 .6

2.5 1.4 .5

2.0 i.i .5

2.4 1.1 .9



20

%

6_ ",q ..... 6 ........ 6_o

!

_ c_3 '43 ,.0 t_- L_, 0 ..-t 0 04 C\ .=._" _C_ t'_ 0"_ 04 00_ OX ('.1 CO OX.XD ,-4

dg
i

cO



21

o
4_

'CJ

/

I

0

/
/

,-I

I1)

4-_

UI

x

I

4-_

-vt

,--t

r_

!

ill

.I--t



22

\

! _/-L

_uJ

!

I
!
!

N
°_
_Q

{H

o

A

bO

r-_
.r_
o

o

,.el

4._

o

bt?
.,.-t

0
o

%
0

4_

Q)

hi?

%

,-t

%
Q)

0

I

d

hi?
.r-.I



23

(a) Front view. L-58-1495

(b) Three-quarter front view. L-58-1496

(c) Side view. L-58-1498

Figure 3.- The 1/14-scale dynamic model of the hydrofoil configuration



24

(a) Rate-gyro sensing element. L-57-5536.1

(b) Pneumatic servoactuator anl tail linkage. L-58-437.1

Figure 4.- Artificial-stabilization system for providing aerodynamic

pitch damping.
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Figure 5.- Variation of free-to-trim total resistance, trim_ and rise of

the center of gravity with speed in smooth water. _o = 197,000 pounds.
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L-57-4014

L-97-4015

Figure 6.- Sting-mounted 1/42.5-size hull _odel with hydrofoils in the

Langley 8-foot transonic pressure tunnel.
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V= 23. 3 knots; T= 0.70; _S = _i0 °

V= q44.8 knots; T= 6.2O; or-- -i0 °
S

V= 67._, knots; T= 5.50; ds= _I_ o

V-- 90.8 knots; T_- 3.20; _" = -10 I
S

L- 59- 6064
Figure i0.- Smooth-water-spray photographs of model during constant-

speed runs. _o = 225,000 pounds.
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V = 112.5 knots; T= 6.40; _rs= -i0°

V= 125.2 knots; T= 7. i°; /s: -I0°

V=157.0 knots; T=9.1°; _rs=-lO°

V= 179.7 kno%s; ,= 6.50; / = -50
s

Figure i0.- Concluded. L-99-6065
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i_O x I05-
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Figure 12.- Variation of free-to-trim total resistance, trim, and rise

with speed in smooth water. _o = 225,000 pounds; Z = 6.3 feet; fixed

stabilizer.
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Figure 14.- Variation of trim and rise with speed during smooth-water

landings. _o = i_0,000 pounds; % = 6.3 feet.
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57

I L

L

I I I

I

I

I d i

I I

I

1I ii
o _ o

i

, _____

.... !;

2:
/
/

I k

I

! •

I

I / I

o

o
o

°r-I

0

,.c:ltl
4-_
*r--I

v

.,r-4

0

4-_
.,r-4

,._ II

°r-] r'_

v

°r-I

o
-_0
or"l

I::Nrc_

H

R_

_>_
"rq

_:I o,-I

o

o
• ,--t

o.cl

4._ °r.t

%

,-t ,--t

o o

,--t m

o %
o,--t

%
I1)

o

o

4-)

°r-t

!

'.D
,--4

.r-I

_3

4._

0

._
4._ _
m 0

I1) ,--t
,-t

0



38

qD
r-4

GO0 0 4<

/ /
\/

I
_ 0

3sp ' eio£o
•,3 .z:t m-t_ x_il

!

0<1 \

. I I

l_0T_eA mttu_N

O

O
r_

\

O

/

J 0 o

!

/

_4

o _._-

/

/
_,ti -

0

,,up

0 0

I

os3_ _mmr_xtN

0

O _ O
I

_oes/s'r,z_p_ 'uo_eleOO_

0

0
O_

,-4

0
q_
0

.r4

_J

o

o

boo

g_
0

% %

0

4-_

0 :_

_g
•,-4 ©

>,.d

0

M

!

,-4

I1)

.r-4



39

J_

J

¢,,.

T
/
EE) E]]

I

_op 'oToKo =_#_ mnm_x_M

OO_O_o,!
• O,I O_!tq

I I

e_Ttm _ '_oT_#eIooow
I_oT_#oA umar_z_N

O

T
I

o o
J,-I

o

GE

I ,,e,

I o
O O
e..,I o,1

! !

_J 'oIO_O osT_ unur_eN

_J

<10
I

o

o0

G
I

I o
O tO O tO

_oe _/=n:zwTp,ear ,r.zoT_,zeTeoo u

o

o,_J

,-_

o a_

,-_
+_
.r...I

0 _",

.r'-I

m
0

,-'t_2

,'_ .,-.4

-_ ,.el

0 N

,-4

°_

_ ,-4

o

%



40

o

1

o

1

i

0 _(_ kO _ l_l 0

h

0
h_

eo

o
•,--i _

o %

a3

.r-t

-o
_ .,--t
o :_

o
•,-40d
4._ ff'x
•r-t Od

_ b9
m _

•,-4 _3

O

O

.r-t

,d
• hi)

G'_C
_-1 .,-_

N?
-r..t
r_



43_

'!
#

(

[\

I
)-

i

)
y

o

ou
w

o

_L

o

@
rH

0

It

c_

o

o
P_

_q

o
r.H
0

,A
II

v

_a
o q_

od

hod
o

o

%
©

%

B

I

d
Od

(1)

b_
.r-I



42

o
u

N

q_
,,..4 m

t

¢.)
.o

q_

o
0

hp '.L "mT._T,

(D
+.)

0

,el

O',D

0

b.O

_ o
0 .r-I

•el °r-t

0

0
,-t

hi? .,--I

¢..) o_
4-_ 4-_

•,--4 _

(1)

_d

4._ -,4

!

Od



43

F

o



44

•16

• 12

c L .o_

.o_

.oE

.o_
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Figure 23.- Summary of static longitudinal lerodynamic characteristics

of hull model with and without hydrofoils over the transonic speed

range. Natural transition; it = -2.5°; _tagnation pressure,

0.5 atmosphere.
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Figure 24.- Aerodynamic characteristics in sideslip of hull model with

hydrofoils. Natural transition; it = -2.5°; stagnation pressure,

0.5 atmosphere; _ _ 5° .
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Hull and hydrofoil
Basic hull
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Figure 25.- Summary of lateral stability parameters of hull model with

and without hydrofoils. Natural transition; it = -2.5o; stagnation

pressure, 0.5 atmosphere; _ _ 5° .

NASA- Langley Field, Va. L-378


